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Direct numerical simulation (DNS) combined with the Lagrangian point particle model
is used to study Rayleigh-Bénard convection in order to understand modifications due to
the interaction of inertial, nonisothermal particles with buoyancy-driven turbulence. In this
system, turbulence can be altered through direct momentum coupling, as well as through
buoyancy modification via thermal coupling between phases. We quantify the effect of the
dispersed phase by changes to the total integrated turbulent kinetic energy (TKE) and Nusselt
number (Nu). The dispersed particles experience gravitational settling and are introduced
at the lower wall so that turbulence must overcome the settling velocity for the particles to
vertically distribute throughout the domain. We focus primarily on particle inertia, settling
velocity, mass fraction, and the ratio of the particle to fluid specific heat. Furthermore,
individual contributions by the momentum coupling and thermal coupling are studied to see
which most significantly changes Nu and TKE. Our results show that particles with Stokes
number of order unity maximize Nu, corresponding to a peak of clustering and attenuation
of TKE. Increased mass fractions lead to a linear increase of Nu and decrease of TKE. With
varying specific heat ratio, Nu and TKE exhibit monotonic behaviors, where in the high
limit particles become isothermal and depend upon the initialized particle temperature.
It is also shown that particles two-way coupled only through momentum attenuate Nu
and weaken TKE, while thermal-only coupling also weakens TKE but enhances Nu. When
both couplings are present, however, thermal coupling overwhelms the momentum coupling
attenuation, and the net result is an enhancement of Nu.
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I. INTRODUCTION

In a wide variety of natural and industrial systems, turbulent flows suspend particulate matter
which, depending on circumstances, can influence the flow and modify the overall transport of
heat, momentum, and mass. This two-way coupling phenomenon has been studied extensively in
various wall-bounded and homogeneous turbulent flow simulations [1–7], where the influences of
particle inertia, concentration, and/or settling velocity on a multitude of statistical and dynamical
characteristics of the turbulence have been examined in detail. Relatively speaking, however,
numerical studies on the effects of nonisothermal particles are much fewer in number and primarily
focus on the ability of heat-conducting particles to modify heat transfer or alter temperature
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fluctuation statistics of the carrier fluid [8–11]. Even fewer are investigations which consider the
multiple feedback effects of the particles on the turbulent kinetic energy of the fluid—via both direct
momentum exchange as well as thermal feedback through buoyancy forces.

In wall-bounded turbulent flows, it has been repeatedly demonstrated that small, two-way coupled
particles can directly weaken near-wall coherent structures, particularly when the response time of the
particle is near that of the coherent motions [5,12]. At the same time, these small particles can have a
more complex influence on turbulent kinetic energy since the suppression of these coherent structures
can strengthen near-wall streaks, thereby enhancing velocity variance near the walls [13–15]. In the
presence of thermally coupled particles and buoyancy-driven turbulence, however, these (and other)
influences of momentum coupling between the carrier and particle phases will be combined with
the thermally induced changes to the turbulent flow, since in many cases thermally coupled particles
are found to enhance temperature fluctuations and modify mean temperature gradients of the fluid
[10,11].

Recently, Frankel et al. [16] demonstrated that particles heated externally via irradiation in
homogeneous turbulence can significantly modify turbulent kinetic energy (TKE) and mean particle
settling velocities via buoyant plumes emerging from hot, clustered particles. While in this case
the particle temperatures were quite high, buoyant updrafts were created that could exceed the
settling velocity of the particles, and the resulting turbulent kinetic energy of the carrier fluid can be
enhanced due to increased buoyancy production. Characteristics of this particle- or buoyancy-induced
turbulence is described by Zamansky et al. [17,18], where turbulence in otherwise quiescent
fields is created by heating particles and establishes a feedback loop where turbulence causes
particle clustering, which concentrates the particle heat sources, thereby causing further turbulence
production.

In the present study our aim is to further explore the role of thermally and dynamically coupled
particles in buoyancy-driven turbulent flow, but in systems where the particles are not externally
heated. We use turbulent Rayleigh-Bénard (RB) flow as an idealized test configuration and focus on
the relative balance between dynamic and thermal coupling between the particles and surrounding
fluid. In this context, several studies have examined the role of small bubbles in RB flow. It has been
observed that vapor bubbles in liquid can contribute in multiple ways to the surrounding flow: their
radial change indicates a sensible and latent heat exchange with the surrounding fluid and therefore
a carrying capacity for heat across the domain, and their buoyancy can strengthen the cellular up-
and downdrafts commonly observed in RB convection [19,20]. In many cases the overall Nusselt
number is enhanced, although the bubbles can damp out temperature gradients which give rise to
increased buoyant production of TKE. The enhanced Nusselt number is seen over a wide range of
flow Rayleigh numbers, and the bubbles are particularly effective when they have large potential for
growth [21].

While the effects of bubbles and boiling have far-reaching implications on heat transfer in
buoyancy-driven systems, we are instead focused, in this study, on the effects of solid particles in
gas-phase turbulence, particularly when the particles must be lifted by the turbulence from the lower
boundary into the interior of the domain. In a somewhat similar setup, Oresta and Prosperetti [22]
performed simulations of RB flow where solid particles were allowed to settle from the top boundary
downwards, and whose temperature was specified (i.e., the particles were isothermal). Simulations
were performed over a wide range of particle diameters, and it was found that mechanical and thermal
coupling can both substantially change the overall heat transfer, mean particle settling velocities, and
flow patterns in the system. We intend to further this understanding by investigating particles whose
temperature is nonisothermal, and whose suspension is dictated by the turbulence which it can modify
through both mechanical and thermal coupling.

II. METHOD

Our goal is to investigate the influence of thermally conducting particles which are smaller than
the smallest scales of the turbulence, so we therefore invoke the point particle assumption and track
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individual particles as Lagrangian points with their own mass and temperature. At the same time, the
continuous carrier phase is solved via direct numerical simulation (DNS) on an Eulerian grid and is
subject to the Navier-Stokes equations under the Boussinesq approximation:

∂ui

∂xi

= 0, (1)

ρf

Dui

Dt
= − ∂p

∂xi

+ μf

∂2ui

∂x2
j

+ βT ′gρf δ3i + Fi, (2)
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DT

Dt
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∂2T
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j
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where ui is the fluid velocity, ρf is the fluid density, p is the pressure, μf is the fluid dynamic viscosity,

Cp,f is the specific heat of the fluid, kf is the thermal conductivity of the fluid, g is the acceleration
of gravity, δ is the Kronecker delta, and β = 1/T0 is the thermal expansion coefficient (assuming the
Boussinesq limit and an ideal gas, where T0 is the reference temperature). The temperature deviation
T ′ = T − T0 is the deviation of the temperature from the reference state (taken herein as the cold
plate temperature). The terms Fi and S represent the momentum and thermal two-way coupling
between the carrier and dispersed phases, and are computed by summing the net momentum and
energy gained or lost by the particles and distributing to the surrounding grid points.

Likewise, mass, momentum, and energy conservation of the dispersed phase yield the following
equations for each individual particle:

dxi

dt
= vi, (4)

dvi

dt
= 1

τp

(uf,i − vi) + gδ3i , (5)

dTp

dt
= (Tf − Tp)

τT

, (6)

where terms other than gravity and hydrodynamic drag have been neglected from the particle

momentum equation since the density ratio between the carrier and particle phase is large, and Stokes
drag is assumed because the particle Reynolds numbers remain small [23]. The particle position xi

evolves according to its velocity vi , and Tp is the particle temperature. The fluid velocity uf,i and
temperature Tf at the particle location are interpolated using sixth-order Lagrange interpolation.
In Eq. (5), τp = (ρpd2

p)/(18μf ) is the Stokes acceleration time scale of the particle, where dp is
the particle diameter and ρp is the particle density. In Eq. (6), τT = (3τpPrCp,p)/(Cp,f Nup) is the
thermal time scale of the particle, where Cp,p is the particle-specific heat and Pr = νf /αf is the
fluid Prandtl number, where νf = μf /ρf is the fluid kinematic viscosity and αf = kf /(ρf Cp,f ) is
the fluid thermal diffusivity. For flow past a spherical droplet, Nup is obtained from a dimensionless
empirical correlation [24]:

Nup = 2 + 0.6Re1/2
p Pr1/3, (7)

where Rep = |vi − uf,i |ρf dp/μf is the particle Reynolds number. The notation |vi − uf,i | refers to
the magnitude of the vector difference between the fluid and particle velocities.

Equations (1)–(6) are solved using the same numerical code as used previously in our research
group [7,25–27], so only a brief summary is provided here. The code is periodic in the horizontal x and
y directions and uses a stretched grid in the vertical z direction. A pseudospectral discretization is used
in the horizontal directions, and second-order finite differences are used in the vertical direction. Time
integration for both the particle and carrier phases is done with a third-order Runge-Kutta scheme,
and the divergence-free velocity field of the carrier phase is enforced via a fractional step method.
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TABLE I. Baseline fluid and particle properties. These param-
eters are constant unless specifically varied in subsequent sections.

Parameter Value

Ra 2 × 106

H 0.116 m
Lx,Ly 0.348 m
Ubuoy 0.204 m s−1

ρf 1.29 kg m−3

νf 1.37 × 10−5 m2 s−1

αf 2.02 × 10−5 m2 s−1

Pr 0.678
	T 10.0 ◦C
φm 0.05
Cp,f 1.0 kJ kg−1 K−1

Cp,p 4.179 kJ kg−1 K−1

The numerical domain is rectangular with a size of 3H × 3H × H and a grid of [Nx,Ny,Nz] =
[128,128,128]. A stretched, nonuniform grid is used in the z direction to resolve the boundary
layers. Boundary conditions for the carrier phase are of the Dirichlet type at the upper and lower
boundaries: no-slip for all three velocity components and specified temperatures Ttop = 300.15 K
and Tbot = 310.15 K at the upper and lower boundaries, respectively. For the particles, an elastic
reflection is enforced at the upper boundary (equivalent to a no-flux condition), and the particle is
removed when crossing the lower boundary.

In this study we are particularly interested in systems where the dispersed phase must be suspended
by the turbulence from below, akin to physical processes such as aeolian saltation [28]. Therefore
for each particle which is removed at the lower boundary due to gravitational settling, we reinsert
a particle which possesses the same velocity and temperature as the exiting particle, and place it at
a randomly chosen location in the lower 10% of the domain. By giving the new particle the same
properties as the exiting particle, we ensure that the particle phase does not represent an external
source of heat or momentum, unlike previous studies [22]. The maximum reinsertion height of
z/H = 0.1 is based on the crossover point between diffusive and turbulent momentum fluxes; at this
point turbulent transport of heat and momentum begins to dominate over diffusive transport, and we
take this as a location where turbulence can potentially lift particles into the interior of the domain.
The reinjection percentage (the average number of particles reinjected per time step, normalized by
the total number of particles) is around 0.2% for St ≈ 10.0 and much smaller (0.002%) for St ≈ 0.1
for low settling velocities. This percentage increases with settling velocity at all St.

For all numerical simulations herein, the Rayleigh number of the flow, Ra = (gβ	T H 3)/(νf αf ),
is set to 2 × 106, where 	T = Tbot − Ttop is the difference in plate temperature. In all cases, the
particle temperature is initialized at Tp,init = 305 K. Other constant properties of the simulations
are shown in Table I. Unladen simulations were validated against experimental Nu-Ra relationships
[29], while Nu from isothermal, particle-laden simulations were compared to previous numerical
results [22] (Nu defined below). The centerline Taylor-scale Reynolds number Reλ is approximately
50. Particle-laden simulations are initialized by placing particles at random locations within a
previously obtained unladen turbulent field. We perform a series of simulations to investigate four
key dimensionless parameters which govern this multiphase system:

(1) The particle inertia, as described by the Stokes number St = τp/τf , where τp was defined
above and where τf is chosen here as the Kolmogorov fluid time scale τf = (ν/ε)1/2, where ε is the
vertically averaged rate of dissipation of turbulence kinetic energy. The local Kolmogorov time scale
does not vary significantly from the effects of the two-way coupled system, and the vertical profile
of ε does not deviate significantly from the vertically averaged value [see Fig. 8(a)].
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(2) The dimensionless particle settling velocity Vg/Ubuoy, where Vg = τpg is the particle terminal
velocity and Ubuoy = √

gβ	T H is a buoyancy velocity scale.
(3) The particle mass fraction φm, which is defined as the total mass of particles in the system to

mass of carrier phase.
(4) The specific heat ratio Cp,p/Cp,f .
We also vary the couplings (i.e., thermal and dynamic) to determine which leads to a larger

influence on the carrier phase heat transfer and turbulence. In the next section, the findings from each
of these simulation sets will be described in detail.

III. RESULTS

A. Particle inertia and settling velocity

It is well known that particle inertia leads to preferential clustering [30], and that the combination of
inertial clustering and gravitational settling can lead to preferential sweeping and enhanced vertical
velocities [31,32]. Therefore in light of this interplay between inertia and gravity, we begin by
discussing results from a series of simulations which vary St and Vg/Ubuoy independently, in order
to understand the relative roles of inertia and settling on modulation of turbulence in the system.
Numerous simulations were run across the two-dimensional parameter space ranging between
10−1 < St < 15 and 10−4 < Vg/Ubuoy < 0.1. In all cases, once the simulations reaches t∗ ≈ 175,
where t∗ = tUbuoy/H , a statistically steady state is achieved. From this point, time averaging is
performed until t∗ ≈ 1400, leading to average quantities (such as vertical particle concentration and
temperature distribution) statistically converged within 1%.

Figure 1 qualitatively demonstrates the effect of particle inertia on clustering by providing
instantaneous snapshots of normalized fluid temperature (color contours) and particle location (black
dots) for varying St at constant Vg/Ubuoy = 10−3. From the figure it is apparent that particles with
St ≈ 1 tend to cluster into bands which are closely aligned with the up- and downdrafts of the RB
convection cells, while for much larger and smaller St, the particles remain more homogeneously
distributed throughout the domain. Note that the number of particles is different since the mass
concentration is held constant at φm = 0.05 (φm is the ratio of particle mass to fluid mass in the
system).

As with shear-driven turbulent flows, particles drift toward the walls in the absence of gravitational
settling due to turbophoresis [33,34], despite significant differences in near-wall coherent structures

FIG. 1. Instantaneous snapshots of normalized temperature contours in a top-down view at a height of
z/H = 0.8 for (a) St ≈ 0.1, (b) St ≈ 1, and (c) St ≈ 10. Black dots represent particles, and the slice is taken at
a height of z/H = 0.85. Vg/Ubuoy = 10−3 for these cases.
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FIG. 2. Profiles of normalized number concentration for (a) varying St at a constant Vg/Ubuoy = 10−3 and
(b) varying Vg/Ubuoy at a constant St ≈ 1.

between turbulent channel and RB flows. Figure 2(a) shows that this effect is of similar magnitude at
both St ≈ 1 and St ≈ 10, and that for St ≈ 0.1 the particles are more or less distributed evenly across
the vertical direction since they behave mostly as fluid tracers (except at the walls, where boundary
conditions cause deviations). The relatively small settling velocity in Fig. 2(a), Vg/Ubuoy = 10−3,
induces a small measure of asymmetry in all three profiles, but this settling is not large enough to
overcome the drift toward both walls.

At a constant Stokes number of St ≈ 1, the effect of increasing the settling velocity is shown
in Fig. 2(b). Here small increases of settling velocity actually increase the concentrations near the
center line (z/H = 0.5), as the downward settling begins to overcome upward turbophoretic drift.
Eventually, at strengths around Vg/Ubuoy = 0.05, the gravitational settling becomes too strong for the
flow to maintain suspension, and by Vg/Ubuoy = 0.1 the particles are nearly all settled at the bottom.
For these largest settling velocities, there is a sharp discontinuity in concentration at z/H = 0.1 due
to the random injection location of regenerated particles in the bottom 10% of the domain.

As a basis for understanding and explaining modifications to turbulence and heat transfer due to
the two-way coupling of the particles, Fig. 3 presents several quantities associated with the particles’
ability to thermally interact with the flow, as a function of St at a constant Vg/Ubuoy = 10−3.

First, Figs. 3(a) and 3(b) show that the overall mean temperature in the system is only slightly
modified as a result of the two-way coupled particles, but the particle temperature can deviate
substantially from the local fluid temperature. For Cp,p/Cp,f = 4.179, the thermal time scale τT

is about four times that of the Stokes acceleration time scale τp (see, for example, Nakhaei and
Lessani [11] or Zonta et al. [8]). This, in effect, leads to a thermal Stokes number (defined as
StT = τT /τf ) to be four times that of the momentum-based St. As the Stokes number increases, the
overall magnitude of the difference between the fluid and particle temperatures increases due to the
particles’ higher thermal inertia. The reinjection procedure of setting the new particle temperature
equal to the departing particle temperature causes a small kink at z/H = 0.1 for high particle inertia,
which again results because higher St particles cannot adjust their temperature as quickly as low St
particles.

This inability of particles to quickly adjust to the local fluid temperature is what drives the
thermal coupling between the dispersed phase and the fluid, which in turn modifies heat transfer
and turbulence in the RB system (more will be said on this below). To further quantify this thermal
disequilibrium, Fig. 3(c) shows mean profiles of the difference between the particle temperature and
the fluid temperature seen by the particles. It is this quantity which appears in the right-hand side of
Eq. (6), driving heat exchange between the particle and fluid. In the study of Oresta and Prosperetti
[22], the particle temperature was assumed constant, so this quantity only reflected fluid temperatures
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FIG. 3. Normalized, mean vertical profiles of (a) fluid temperature 〈T 〉, (b) particle temperature 〈Tp〉, (c)
difference between average particle temperature and average fluid temperature seen by the particles 〈Tp〉 − 〈Tf 〉,
and (d) difference between fluid temperature and fluid temperature seen by the particles 〈T 〉 − 〈Tf 〉. The dashed
horizontal reference line represents the maximum reinjection height of z/H = 0.1. Shown are three different
Stokes numbers at a constant Vg/Ubuoy = 10−3.

seen by the particle and would not be as sensitive to the Stokes number. Here Fig. 3(c) shows that with
increasing Stokes number, the overall degree of disequilibrium between the particle temperature and
the local fluid temperature increases, which again is consistent with the higher thermal inertia of the
larger St particles. A similar feature is seen in Nakhaei and Lessani [11]. Above the reinjection height
of z/H = 0.1, particles are almost all warmer than their surroundings, while below z/H = 0.1 the
particles are always cooler due to their removal and replacement as they settle out of the bottom
domain.

Finally, Fig. 3(d) shows a slightly different quantity: the difference between horizontally averaged
fluid temperature and the average temperature seen by the particles. In the case of particles which
are homogeneously distributed across the horizontal plane, this difference would be zero since
the particles would uniformly sample all of the fluid temperatures in the plane. Therefore, the
difference 〈T 〉 − 〈Tf 〉 indicates particles preferentially collecting in regions where the temperature
does not equal the true horizontal mean. Indeed, Fig. 3(d) shows that particles of St ≈ 0.1 show very
small differences between these temperatures, which is consistent with the qualitative observation
of Fig. 1(a). In the upper portion of the domain, this difference is maximum and positive for St ≈ 1,
indicating that particles are preferentially residing in areas where the local temperature is cooler than
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FIG. 4. (a) Instantaneous Voronoï diagram for St ≈ 1 taken at z/H = 0.5 for a slice of thickness 2η (the
Kolmogorov length scale) with Vg/Ubuoy = 10−3. (b) Standard deviation of the normalized Voronoï area σV ,
normalized by that of a random Poisson process, σRPP , as a function of St.

the horizontal average (i.e., downdrafts). Near the bottom, the particles reside in regions warmer than
the mean (i.e., updrafts), and this effect is modified by the lower boundary condition.

An alternative way to identify particle clustering can be done through Voronoï diagrams [35].
Here Voronoï cells are drawn, and their areas are inversely related to the local concentrations; their
statistical distribution can be used to quantify clustering. In Fig. 4(a) the Voronoï cell areas are
visualized for a representative slice taken at z/H = 0.5 for the St ≈ 1, Vg/Ubuoy = 10−3 case. We
then compare the statistical distribution of Voronoï areas to that of a random Poisson process and
compare the standard deviation σV to identify clustering.

Figure 4(b) presents the ratio σV /σRPP as a function of St for Vg/Ubuoy = 10−3, where σRPP is
the standard deviation of Voronoï areas if particles were randomly distributed. The figure shows the
greatest clustering for St at order unity. In the limits of low and high St, σV approaches σRPP as
particles become tracers on the low end, and as particles become unresponsive to velocity fluctuations
on the high end.

In this study we focus on two intertwined effects of the particles: altering the cross-channel
heat transfer, and modifying the characteristics of the turbulence. The former is quantified by the
channel Nusselt number: Nu = qH/(kf 	T ), where q is the total heat flux from the bottom to the
top boundary. We measure the latter by the vertically integrated turbulent kinetic energy, TKE =
1
H

∫ H

0 k dz, where k(z) = 1
2 〈u′2 + v′2 + w′2〉 is the mean TKE at each height.

Figure 5 presents a cross section of our results holding St ≈ 1 constant while varying the settling
velocity, in order to observe changes to heat transfer and turbulence. From Fig. 5(a), the addition
of nonisothermal, two-way coupled particles leads to an increased Nu compared to the unladen
case, regardless of settling velocity. In the limit of vanishing gravitational settling, Nu approaches a
gravity-free limit of roughly 15% higher than the unladen value, while in the limit of high settling
velocity, Nu approaches the unladen value as all of the particles are confined to the lowest 10%
of the domain. Between these limits, peaking around Vg/Ubuoy ≈ 10−3, the enhancement of Nu
reaches a maximum, which we argue is linked to the increased concentration in the domain center
as gravitational settling overcomes upwards turbophoretic drift [cf. Fig. 2(b)].

Figure 5(b), on the other hand, shows that the turbulence of the system is actually weakened
compared to the unladen case for nearly all settling velocities. Again, the limit of low Vg/Ubuoy

approaches the gravity-free damping of TKE, while the upper limit approaches a value near the
unladen case, and the peak damping of TKE occurs now closer to Vg/Ubuoy ≈ 10−2.

For understanding the effects of particle inertia, Fig. 6 shows the converse of Fig. 5: the settling
velocity is held constant at Vg/Ubuoy = 10−3 while St is varied between 0.1 < St < 15.
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FIG. 5. Normalized (a) Nu and (b) TKE as a function of Vg/Ubuoy for St ≈ 1 with two-way thermal and
mechanical coupling. The dashed horizontal lines are the unladen values and reflect the unladen values.

Again, Nu is enhanced while TKE is suppressed for all St compared to the unladen values.
Fig. 6(a) shows a distinct peak of Nu enhancement at St ≈ 1, which is associated with particle
clustering [36,37]. In the limits of high and low St, Nu approaches its unladen value. The TKE of
the system, however, has a more unique dependence on St, as shown in Fig. 6(b). Here there is not a
single maximum of TKE reduction, and there exists a local minimum in TKE reduction at St ≈ 1. We
note that for low St, Fig. 6(b) does not yet approach the unladen TKE as our thermal inertia based on
τT is still non-negligible. Thus St ≈ 0.1 corresponds to StT closer to 0.4, and we expect an approach
to unladen values of TKE at even lower St. Given that we hold φm constant, these simulations are
too expensive for the large number of small particles required.

In this flow particles have the ability to modify turbulence in two ways, via direct momentum
coupling between phases, and through modifications to the temperature profile. To therefore better
understand Fig. 6, Fig. 7 presents two of the normalized components of the heat flux: q turb = 〈w′T ′〉,
which is the turbulent heat flux, and qpart, which is the vertical heat flux due to the particle source term
S in Eq. (3). The modification of q turb is nonmonotonic with St, in that maximum centerline reductions
occur for both St ≈ 0.1 and St ≈ 2.5 (other St curves are not shown for clarity). These correspond to

FIG. 6. Normalized (a) Nu and (b) TKE as a function of varying St for Vg/Ubuoy = 10−3 with two-way
coupling. The horizontal lines are the unladen values.
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FIG. 7. Overall heat flux contributions due to (a) turbulent flux and (b) particle source flux.

the maximum TKE reductions in Fig. 6(b), which is consistent since buoyancy production of TKE is
proportional to 〈w′T ′〉. For these St, the primary effect of the particle is therefore to reduce buoyant
production of TKE, while the effect of direct momentum coupling is much smaller (this is further
discussed in the next section). The behavior of qpart, meanwhile, exhibits only a single peak, with
a maximum particle heat flux at St ≈ 1. This peak is associated with particles clustering in up- and
downdrafts of the flow, and leads to the peak of Nu enhancement at St ≈ 1.

This additional mode of heat transfer, namely, that being carried by particles via qpart, disrupts
certain of the canonical features of Rayleigh-Bénard flow. For instance, the exact relationship between
turbulence dissipation and heat transfer, ε = ν3Ra(Nu − 1)/(H 4Pr2) [38], no longer holds because
the two are not simply linked via local flow quantities. In the present case, for instance, dissipation
ε is only slightly changed via two-way coupling [Fig. 8(a)], while Nu can be increased as a result of
particles (Fig. 6).

Furthermore, in Fig. 8(b) it is found that, analogous to the turbulence dissipation ε, the thermal
dissipation rate εT = αf 〈∇T ′ · ∇T ′〉, where ∇T ′ is the temperature fluctuation gradient, does not
change significantly due to the particle thermal exchange with the fluid. The profiles in Fig. 8
suggest that dissipation (and other small-scale) mechanisms actually do remain intact in particle-laden

FIG. 8. Dissipation rate ε and thermal dissipation rate εT normalized by the vertical average (va) of its
corresponding components. Plots have been zoomed in to highlight behavior in the domain center.
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FIG. 9. Normalized (a) Nu and (b) TKE as a function of both St and log10(Vg/Ubuoy). The solid lines
represent evenly spaced contour levels for better clarity of the features.

Rayleigh-Bénard flow, and that the primary effect is the additional heat transfer mechanism through
qpart and corresponding reduction of q turb.

Finally, as an overview of the behavior described above, Fig. 9 presents a two-dimensional contour
map of the fractional change of Nu and TKE as a function of both St and Vg/Ubuoy, compiled using
over 30 simulations.

Several important features are noted. First, in Fig. 9(a), it is clear that the heat transfer enhancement
due to particles is much more strongly affected by St than by settling velocity. The primary effect of
Vg/Ubuoy is to shut off the enhancement at sufficiently high values (returning to blue along the top
of the figure). At all intermediate and low values of Vg/Ubuoy, Nu behaves in the same way as shown
in Fig. 6(a), a peak at St ≈ 1, falling off to the unladen value at asymptotically high or low values.

The turbulent kinetic energy, on the other hand, behaves in a more complex way as a function of
St and Vg/Ubuoy. First, for increasing inertia, the amount of gravitational settling needed to approach
the unladen case decreases, as identified by the sloping boundary between yellow and blue at the
upper right-hand corner of Fig. 9(b). Furthermore, the Stokes number corresponding to the minimum
in TKE (i.e., the maximum reduction) also changes slightly with settling velocity, as seen by the
orientation of the dark blue region on the left side of the contour map. This interdependence is related
to the maximum centerline concentration seen in Fig. 2(b) at intermediate settling velocities, and
Fig. 9(b) shows that the global minimum of TKE occurs for St ≈ 2 and Vg/Ubuoy ≈ 10−2.

B. Coupling, specific heat ratio, and mass fraction

In the previous section we focused on the role of St and settling velocity on heat transfer and
turbulence modulation, and we identified that St had the strongest effect on Nu and TKE. In this
particle-laden Rayleigh-Bénard system, however, a few remaining factors can potentially influence
the particle-turbulence interaction.

First, we consider the effects of coupling—thermal versus mechanical—by turning each on and off
independently. We take St ≈ 1 and Vg/Ubuoy = 10−3 for all cases, and Fig. 10 shows the independent
contributions of momentum and thermal coupling on both Nu and TKE. For any St, momentum
coupling weakens the heat transfer, while thermal coupling enhances it. From Fig. 10(a), the thermal
coupling overwhelms the momentum coupling effect, shown by the nearly identical Nu between the
both and thermal coupling, resulting in an overall increase in Nu. Again, for limits of both high and
low St, the unladen Nu is recovered. For St ≈ 1, the effect of preferential concentration exhibits
itself only in the thermal coupling, whereas the changes in Nu due to momentum coupling only are
a weak function of St.
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FIG. 10. Normalized (a) Nu and (b) TKE for all three types of couplings.

As previously discussed, the interplay between direct momentum coupling and thermally induced
changes to buoyancy are both factors which vary the strength of TKE reduction. Figure 10(b) shows
that, similar to Nu, the thermal coupling between phases is a larger portion of the overall effect of
TKE. However in this case, the direct momentum coupling is similar in magnitude, and both work to
reduce TKE compared to the unladen case. With only momentum coupling, a maximum attenuation
is found at St ≈ 2, while thermal coupling again results in a local attenuation minimum around
St ≈ 1. This local peak, seen in Fig. 6(b), is clearly a result of thermal coupling and as discussed
above is caused by the thermally induced reduction of the turbulent heat flux q turb [see Fig. 7(a)].

Second, all simulations presented in the previous section had a set specific heat ratio and mass
fraction (see Table I). Again holding St ≈ 1 and Vg/Ubuoy = 10−3, we independently vary these
quantities to assess their impact on Nu and TKE. Note that the thermal time scale, τT , will now
vary with Cp,p/Cp,f , while the aerodynamic time constant, τp remains the same. This, in turn,
will affect only StT while the momentum-based St ≈ 1 is constant. Figure 11 shows the effect of
changing the ratio Cp,p/Cp,f over three orders of magnitude. Above and below a ratio Cp,p/Cp,f ≈
1, the behavior of Nu and TKE is distinct. For low Cp,p/Cp,f , the particles carry vanishingly small
amounts of heat relative to the same mass of fluid and actually reduce Nu relative to the unladen case

FIG. 11. Normalized (a) Nu and (b) TKE for varying Cp,p/Cp,f , holding St ≈ 1 and Vg/Ubuoy = 10−3 with
both couplings.
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FIG. 12. Normalized (a) Nu and (b) TKE with all three types of couplings while varying φm at constant
St ≈ 1 and Vg/Ubuoy = 10−3.

[Fig. 11(a)]. Since the carrying of heat by particles is one of the primary mechanisms for enhancing
Nu [see Fig. 7(b)], reducing their heat capacity below that of the fluid means that the same mass of
particles carries less heat than the same mass of fluid. Furthermore, in the limit of zero particle heat
capacity, the flow is dominated by momentum coupling, which, as shown in Fig. 10(a), results in the
attenuation of Nu. As Cp,p/Cp,f increases above unity, the particles effectively become isothermal
(a case considered by Oresta and Prosperetti [22]), and therefore Nu depends entirely on their initial
temperature (Tp,init = 305.15 K, the average of the plate temperatures). For TKE [Fig. 11(b)] the
results are similar: in the limit of small Cp,p/Cp,f , the attenuation of TKE saturates, since the flow is
dominated by momentum coupling alone. As the heat capacity ratio increases, the enhanced thermal
interaction between phases causes a larger decrease of buoyant TKE production, thereby reducing
TKE relative to the unladen case.

Finally, Fig. 12 shows the influence of the mass fraction φm. In the limit of zero φm, the changes
of Nu and TKE tend toward the unladen values as expected. From there, increased φm yields an
enhancement of Nu (for both couplings) and an attenuation of TKE which is roughly linear with φm.
For all combinations of thermal and mechanical coupling, this linear relationship is generally true,
and for each φm, the relative balance between the different couplings is roughly the same. At higher
values of φm, particle-particle interactions would require consideration [39].

IV. CONCLUSION

In this study, a DNS model is used to simulate canonical Rayleigh-Bénard flow laden with
thermally and dynamically coupled particles, to investigate the response of turbulence and heat
transfer. We focused in particular on the independent roles of particle inertia, as specified by
the Stokes number, and the settling velocity, normalized by a buoyancy velocity scale, all at a
constant Rayleigh number. In a broad sense, we are seeking an understanding of the nondimensional
functionalities Nu(φm,Cp,p/Cp,f ,St,Vg/Ubuoy) and TKE(φm,Cp,p/Cp,f ,St,Vg/Ubuoy) at constant
Ra. We find that the dependence of both of these quantities on the mass fraction φm is roughly
proportional, and that both are relatively insensitive to Vg/Ubuoy for Vg/Ubuoy < 10−2; above this,
particles settle significantly towards the bottom of the domain, and the turbulence and heat transfer
approach unladen values.

In this regime, the full dependence of Nu and TKE simplifies to Nu = φmf (St,Cp,p/Cp,f ) and
TKE = φmg(St,Cp,p/Cp,f ), where f and g are dimensionless functions. At constant Cp,p/Cp,f ,
Nu and TKE ultimately become only a function of St, whose shape is indicated in Fig. 6. Likewise,
in the limit of vanishing specific heat ratio (Cp,p/Cp,f < 10−1), the particles become permanently
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in thermal equilibrium with the flow, and the momentum coupling is the only means of particle
influence on the flow; again St becomes the only meaningful independent parameter.

At all St, Nu was enhanced, while the effects of preferential concentration near St ≈ 1 resulted
in a peak of Nu enhancement by up to 20%. Total integrated turbulent kinetic energy was found
to be attenuated in all cases, due to both direct momentum coupling as well as reduced buoyancy
production via particle-fluid thermal coupling. The primary cause of the enhancement of Nu is due
to the direct particle contribution, as particles carry heat upwards during their vertical transport.
The turbulent flux of heat is reduced, which is responsible for the decrease in TKE. The finding
that thermal coupling overwhelms momentum coupling depends on the specific heat ratio, and
in the limit of small Cp,p/Cp,f , momentum coupling dominates. In addition, we anticipate that
momentum coupling may be more important relative to thermal coupling in the nondilute regime,
where particle-particle collisions would need to be considered.

In this flow, where two-way coupling has multiple paths of influence (i.e., both thermal and
mechanical coupling), we find a complex interplay between the direct momentum feedback between
phases, and the modified buoyancy production of turbulent kinetic energy. As a result, some single-
phase relationships (i.e., turbulence dissipation and heat transfer) that were established in previous
studies are not applicable for coupled particles. Fruitful extensions of this system could include
higher Rayleigh numbers, particle evaporation, or particle-particle interaction.
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